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Abstract

We examine the optimal allocation of Integrated Air Defense System (IADS) re-

sources to protect a country’s assets, formulated as a Defender-Attacker-Defender

three-stage sequential, perfect information, zero-sum game between two opponents.

We formulate a trilevel nonlinear integer program for this Defender-Attacker-Defender

model and seek a subgame perfect Nash equilibrium, for which neither the defender

nor the attacker has an incentive to deviate from their respective strategies. Such

a trilevel formulation is not solvable via conventional optimization software and an

exhaustive enumeration of the game tree based on the discrete set of strategies is

intractable for large problem sizes. As such, we test and evaluate variants of a tree

pruning algorithm and a customized heuristic, which we benchmark against an ex-

haustive enumeration. Our tests demonstrate that the pruning strategy is not efficient

enough to scale up to a larger problem. We then demonstrate the scalability of the

heuristic to show that the model can be applied to a realistic size problem.

Key words: game theory, combinatorial optimization, Double Oracle, trilevel, IADS
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A GAME THEORETIC MODEL FOR

THE OPTIMAL DISPOSITION OF

INTEGRATED AIR DEFENSE SYSTEM ASSETS

I. Introduction

1.1 Motivation

Counterinsurgency has been a primary focus of U.S. military studies due to the

nature of recent conflicts [1]. However, the events such as the Crimean crisis in

Ukraine [2] and the Hamas-Israel conflict in Gaza Strip [3] certainly draw more at-

tention to studies in conventional warfare. Within this research, we seek to examine

an issue within the conventional warfare framework: optimal decision making pertain-

ing to the design and operation of an Integrated Air Defense System (IADS). Herein,

we consider a sequence of defender and attacker IADS-related decisions within a game

theoretic framework.

Since the advent of the V-2 rockets in the World War II [4], the threat of missiles

has been present in the U.S. military defensive framework. More recently, U.S. allies,

such as Israel and South Korea, face significant threats from their neighboring states.

Since World War II, Israel has been the largest recipient of U.S. foreign aid at $121

billion. Within this aid, the U.S. contributed $2.365 billion to the Arrow anti-missile

program since 1988 [5]. In FY2014 alone, the U.S. and spent $729 million for US-

Israeli Missile Defense budget [6]. Also, South Korea is experiencing increased threats

from North Korea; consider, for example, its recent display of nuclear missile testing

and Unmanned Aerial Vehicle patrols [7].
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We motivate our problem by using Israel’s Iron Dome air defense system as an

example. Iron Dome is a short-range anti-rocket system designed to selectively in-

tercept short-range rocket threats that are in-flight and targeting population centers.

The Iron Dome system consists of a portable missile firing unit, detection radar, and

battle management center [5]. This system was designed by Israel to counter attacks

from either the Gaza Strip or Syria. The question for Israel, then, is where should

they place Iron Dome batteries? Assuming that the main objective of an IADS is

to protect valuable assets (e.g., population or infrastructure), the set of decisions

involves the location of batteries to protect the most valuable targets. This logic is

applicable and will yield the best coverage based on the defender’s valuation of tar-

gets. However, if we assume that Hamas, the attacker, knows the layout of Israel’s

defense, they may attack smaller, unprotected targets that an IADS system with lim-

ited resources cannot protect, or they may attack the most valuable targets that are

protected by the IADS if there is a sufficient likelihood of penetrating the air defense.

The same argument applies for Hamas. If Hamas seeks to maximize the damage

to Israel without consideration of Israel’s defensive resources, they must attack as

many valuable targets as possible. However, with Israel’s air defense system there is

a probability that a rocket attack is ineffective, which increases with improvements

to Israel’s defense.

Herein, we consider a game theoretic study of resource allocation in a strategic

environment, wherein each of two decision makers must allocate resources, and the

other’s strategies affect their own payoffs. In this particular example, the locations

at which Israel places its Iron Dome assets affect Hamas’ strategies and payoffs, and

vice versa. In addition, we apply the concept of Nash equilibrium: a set of respective

strategies from which neither player has an incentive to deviate.

Even though Iron Dome was used as an example, it is only one component of

2



Israel’s IADS. Other components include anti-rocket systems such as David’s Sling,

as well as Arrow I, II, and III intercept missiles, each of which has different flight

characteristics. For the purpose of this initial research on this strategic problem, we

generalize the defensive batteries as Surface-to-Air Missile (SAM) batteries that carry

a certain number of interceptor missiles (IM), and we generalize the attacker’s assets

as attacker missiles (AM).

1.2 Problem Statement

Given a set of cities N , each with a value vj, j ∈ N , a limited number of SAM

batteries, and a fixed number of IMs for each SAM site for the defender, and a

fixed number of AMs for the attacker, what are the best respective defender and

attacker strategies to locate and/or allocate their assets? We model this situation

as a two-player, sequential, three-stage, perfect information, zero-sum game. The

term zero-sum indicates that the attacker’s gain in target destruction will equal the

defender’s loss. We model this situation as a sequential game wherein the defender

initially sets up its SAM sites, then the attacker targets certain cities by firing a single

salvo of AMs, upon which the defender launches interceptors against the incoming

AMs. We refer to this framework as a defender-attacker-defender or D-A-D model.

1.3 Assumptions

For the purpose of this research, we make the following initial assumptions:

General Assumptions.

1) All parameters are common knowledge. That is, both players know how many

SAM batteries and IMs the defender has and how many AMs the attacker has.

Given the current state of information availability and intelligence capability, this

3



is a reasonable assumption to make. This assumption makes the game a complete

information game.

2) After each stage, both players know exactly what happened in the previous stage.

This assumption makes the game a perfect information game.

3) Targets are valued equally by both the defender and the attacker. This is a

necessary assumption for a zero-sum game model.

4) An unintercepted AM will destroy a city with 100% probability. This is a simpli-

fying assumption.

Defender Assumptions.

1) A SAM can only be placed at a city. We make this assumption to limit the strategy

space for the defender.

2) At most one SAM battery can be located at a given site. This is a simplifying

assumption.

3) No more than one interceptor will be launched against each incoming AM. This

assumption comes from the fact that the defender will not have time to launch a

second salvo if the IM fails to destroy the AM. Since we are considering missiles

that are subject to be intercepted within a limited radius of coverage, the flight

characteristics of the attacker missiles we are dealing with have a short flight time.

4) Each of the SAM batteries has the same number of interceptors. This is a simpli-

fying assumption.

Attacker Assumptions.

1) An attacker will only launch AMs.

4



2) All AMs have identical destructive capabilities and flight performance. We also

assume that all AM launched can be detected by the defender.

3) An attacker will fire all of its AMs in a single salvo.

1.4 Organization

The remainder of this paper is organized as follows. Chapter 2 describes the

current framework of U.S. Integrated Air Defense Systems (IADS) according to Joint

Publication 3-01, Countering Air and Missile Threats [8] and reviews relevant research

in the field that influences our examination of the problem. Chapter 3 presents

the methodologies we examine herein to solve the problem. Chapter 4 presents the

results and analysis of our testing on representative instances of varying sizes and

complexities. Chapter 5 summarizes the contributions of this research and proposes

directions for further studies.

5



II. Literature Review

This chapter provides a review of relevant doctrine, studies, and models from the

literature. First, we outline the definition of an IADS and its components according

to U.S. military doctrine. Then, we examine game theory and related solution con-

cepts. We also review research concerning security games, the r-Interdiction Median

problem, bilevel formulations, and infrastructures.

2.1 Background

According to Joint Publication 3-01 (JP3-01), Countering Air and Missile Threats,

an Integrated Air Defense System (IADS) is defined as “the aggregate of Service/-

functional component air and missile defense (AMD) systems comprising sensors,

weapons, C2, communications, intelligence systems, and personnel...” that follow the

principles of centralized planning, decentralized execution, planned responses, effec-

tive and efficient communications, layered defense, 360-degree coverage, identification

and tracking, alert and warning, and establishing modes of control [8]. Optimization

of an IADS configuration satisfies the planned responses component of the princi-

ples wherein the defender places SAM sites before the attacks occur. JP3-01 also

mentions that while the flight profiles of most ballistic missiles are very predictable,

unpredictable targets require 360-degree coverage, which justifies the generalization

of attacker’s assets as AMs. Also, the publication mentions many different attacker

AM launch platforms (e.g., fighters, bombers, and UAVs) against which the defender

employs its tactics, but we simplify the model to consider a defender having identical

SAM batteries with identical interceptor missiles (IM). Another important distinction

is that there are active AMD and passive AMD measures. Active AMD refers to the

use of aircraft, weapons, and sensors to nullify attacks, whereas passive AMD refers to

6



the use of detection, warning, or concealment to increase survivability [8]. The focus

of this research is on active AMD; we seek to maximize the defender’s effectiveness

of intercepting attacks given that the attacker seeks to inflict the maximum damage.

2.2 Game Theory

Game theory is a study of resource allocation in a strategic environment, where

strategic environment implies that your payoff is influenced by others’ action. With

a game theoretic model, we seek to find a reasonable prediction on the actions of

the defender and attacker. The concept of a Nash equilibrium in a strategic game,

developed by John Nash in 1950, identifies that every finite game has an equilibrium

for which no player has an incentive to deviate [9]. Selten [10] proved that any

sequential game tree can be broken into sub-games and, as a result, will also have

a sub-game perfect Nash equilibrium (SPNE). For a moderately-sized game-tree, a

SPNE can be found via backward induction.

(18,18)

L

(15,20)

R

L

(20,15)

L

(16,16)

R

M

(18,9)

L

(12,8)

R

R

Figure 1. Small Example Game

For this example of a two-player, two-stage non-zero sum game tree (motivated

from [11]) depicted in Figure 5, we can find the SPNE by examining each sub-game.

The pair (x, y) represents the payoff for each terminal node of the game tree, wherein

x is the payoff for the first mover and y is the payoff for the second mover. By

inspection we observe that the equilibria for each sub-game, from left to right in

Figure 5, is respectively R, R, and L because the second player will seek to achieve
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the higher payoff in each case. Backward induction uses the fact that the second

player will follow such a strategy and, with that information, the first mover will

choose R. Thus, the strategy profile (R,L) is the SPNE.

Backward induction is feasible when the size of the game tree is scalable. Notice

that there are (3)(2) = 6 terminal nodes in the tree displayed in Figure 5, where 3 is

size of the first mover’s strategy space, and 2 is size of the second mover’s strategy

space. For our model, there exist
(|N |
m

)
ways that the defender can place its SAM

batteries, where |N | is the number of cities and m is the number of SAM batteries

available, and there exists
(|N |+n−1

n

)
ways that the attacker can allocate AMs against

cities, where n is the number of total AMs. For example, with an instance having

50 cities, 5 SAM batteries, and 5 AMs, the defender has
(
50
5

)
= 2, 118, 760 ways to

allocate its SAM sites, the attacker has
(
54
5

)
= 3, 162, 510 ways to allocate its AMs,

and the resulting number of nodes at the second level exceeds 6.7× 1012. Because of

the combinatorial expansion of the strategy spaces, we cannot possibly enumerate all

terminal nodes within our IADS problem to apply backward induction. We discuss

this further in Chapter 4.

2.3 Combinatorial Game Theory

Combinatorial game theory is a subset of game theory that typically deals with

two-player perfect-information games that have a finite number of moves [12]. Some

examples of combinatorial games are chess, go, checkers, and tic-tac-toe. In combi-

natorial game theory, each game’s complexity is measured based on average length

of the game and how many decisions each player can make at each stage. In chess,

Claude Shannon [13] estimated that the number of possible moves that each player

can make is in the order of 1043. Such number is defined as the state-complexity

in combinatorial games, and in this model, we can determine the exact number of

8



moves of the defender and attacker at each stage based on the number of resources

each player has. One difference from combinatorial games and our model is that the

outcome is not simply win, tie, or loss.

2.4 Tree Search

A substantial number of research endeavors have focused on finding a solution to a

large game-tree. Specifically within the field of artificial intelligence, finding solutions

for computationally intractable games such as chess have been of interest [14]. At each

move in a game of chess, there is a discrete number of moves that a player can make,

and the game tree expands for each move considered. Chess or any two-player board

game is very similar in formulation to our problem in that they are two-player, zero-

sum, perfect information, sequential games. In comparison, the defender-attacker-

defender model is similar to a game of chess that ends in total of three moves.

One method to speed up the search for a SPNE in a large game tree is α − β

pruning, which is similar to the branch-and-bound technique in integer programming.

Knuth et al. [15] outline a technique to speed up the process of exploring a large game-

tree without loss of information. Pearl [16] subsequently proved the optimality of this

solution technique. We use α−β pruning as one of the methodologies to improve the

computation time in finding the SPNE.

2.5 Double Oracle

Another method to address large strategy spaces is the Double Oracle algorithm,

which follows the notion of column and constraint generation in linear programming

as the Double Oracle algorithm solves a subproblem and adds attacker and defender

strategies one by one. McMahan et al. [17] develop and prove convergence and opti-

mality of the Double Oracle algorithm in a two-player, two-stage perfect information

9



game. Because of the similarity in formulations, we predominantly reference Jain et

al. [18] for their Double Oracle implementation. Jain et al. [18] use the algorithm to

solve a large-scale combinatorial optimization security game that is further discussed

in the next section.

2.6 Security Games

Security games are used to inform resource allocation decisions concerning in-

frastructure protection and are an important class of Stackelberg games [19]. A

Stackelberg game is a class of sequential game wherein one player optimizes his strat-

egy knowing that the opponent will observe the decision and subsequently select his

optimal strategy. One example of a security game is airport security where there is

a number of vulnerable sites within an airport (i.e., the protected asset), a limited

number of security personnel (i.e., the defender’s resource), and a potential attacker.

Such a framework aligns very closely to our model. Jain et al. [18] use an algorithm

called RUGGED, a double-oracle based algorithm, to solve their model of network

security games. Security games are similar to our D-A-D model because it involves

a defender and an attacker, and they are sequential games by nature. Other similar

examples of Stackelberg games are hider-seeker games [20] and network games [21].

2.7 Maximum Expected Location Covering

Daskin [22] introduces the Maximum Expected Location Covering model (MEX-

CLP), which models a network in which demand nodes must be served by a limited

number of facilities that are co-located with a subset of the demand nodes. De-

pending on the distances involved, a facility may be able to serve demand at nearby

nodes. For example, placing fire stations in a county with multiples towns of different

populations can be modeled using MEXCLP. Using integer programming, MEXCLP
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maximizes the expected value of demand covered in the network.

The modeling assumptions made in Daskin’s research are similar to our assump-

tions. One of his primary assumptions is binary coverage of a demand by a facility

within a fixed radius; if a demand is within a certain critical distance, the facility

covers the demand. In our model, this assumption is equivalent to stating that if a

city is within the SAM’s defensive envelope, we can consider the city covered by that

SAM battery. That is, the SAM battery may engage incoming AMs targeting the

covered city. Also, MEXCLP utilizes a probability of facility failure, thus the word

expected. The probability of facility failure captures the uncertainty with which the

facility is able to serve demand. In our model, that probability is characterized in

the third level as the single intercept probability of a AM by an IM. Another model-

ing assumption is that redundancy in coverage increase the survivability of a covered

node. In our model’s context, redundant coverage does not mean we launch more

interceptors. Rather, more interceptors would be available to protect the city in case

more AMs are launched against that city. One assumption that is not applicable from

the MEXCLP model is that each facility has an inherent and identical probability

of failure, but we utilize a similar parameter: the probability of failure for an IM

launched by a SAM to intercept a single incoming AM.

2.8 Weapon Target Assignment Problem

Our attacker’s AM allocation problem is motivated by the Weapon Target As-

signment problem (WTAP). The WTAP seeks to assign some discrete number of

weapons to targets so as to minimize the total expected survival value of the targets

after all engagements [23]. WTAP can be formulated as a nonlinear integer program

in which survivability is minimized given some probability of target hit, number of

weapons, and value of each target. Ahuja et al. [23] use a very large-scale neigh-
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borhood (VLSN) search algorithm to solve the WTAP. The WTAP could be applied

to the second-stage of our problem, wherein an attacker seeks to allocate its AMs

in order to minimize the expected survival value of the cities. Ahuja et al. [23]

also provide heuristics which solve the WTAP quickly, albeit sub-optimally, since the

weapon target assignment problem may require quick solutions in its application. For

example, the paper presents one example instance in which there are 200 weapons

and 400 targets and which the heuristic solves in 1.953 seconds.

2.9 Lexicographic Ordering

In order to generate attacker’s strategies, we use a graded lexicographic ordering

index to generate either a single strategy or the entire strategy space. Attacker’s

strategies correspond to multiset or bucketspace in combinatorics where we can put

b distinguishable balls into B distinguishable buckets. Using grlex algorithms from

Equilibrium Blog [24], we can generate all possible attacker strategies given a number

of cities (|N |) and a number of AMs (n). For example, if we wish to generate the
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attacker strategy space for n = 5 and |N | = 6, we would have the following output:



0 0 0 0 0 5

0 0 0 0 1 4

0 0 0 0 2 3

0 0 0 0 3 2

0 0 0 0 4 1

0 0 0 0 5 0

0 0 0 1 0 4

0 0 0 1 1 3

...

4 0 0 1 0 0

4 0 1 0 0 0

4 1 0 0 0 0

5 0 0 0 0 0


Each row represents a unique attacker strategy, each column corresponds to cities,

and the number in each column corresponds to the number of AMs targeting that

city.

2.10 r-Interdiction

The r-Interdiction Median Problem with Fortification (RIMF) by Church and

Scaparra [25] models a problem that maximizes the defender’s covered demand subject

to an attacker’s subsequent intentional interdiction of r facilities. This formulation is

related to our research as it is a Stackelberg game. The first player is a defender who

fortifies q facilities. The second player is an attacker who destroys r facilities that

are not one of the q facilities. The resulting formulation is an integer-linear program.
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Key assumptions in this paper are that a fortified facility will not be attacked and

that the attacker will succeed in attacks that they mount against any non-fortified

facilities. The authors use properties of the Condensed Balinski Constraints with the

Reduction of Assignment Variables (COBRA) formulation to reduce the number of

variables [25]. In one of the instances addressed utilizing COBRA, the number of

decision variables and constraints were reduced from 11,482 and 18,530 to 923 and

1,568, respectively. The authors also propose heuristics and provide computational

results for their performance.

2.11 Infrastructure

Two infrastructure related papers by Brown et al. [26] and Hausken [27] utilize

bilevel formulation in an attacker-defender setting. These papers offer insights con-

cerning the defense of infrastructures. Brown et al. [26] note that high-fidelity models

are achievable as it is possible to gather data and create models of a complex system.

Also, they found that in general, an attacker has the advantage since a defender must

protect a huge, dispersed target set, whereas the attacker only focuses on a small set

of selected target. Hausken [27] addresses the defense of infrastructures against mul-

tiple attackers. Three ways to value a target are proposed: monetary value, human

value, and symbolic value. Although those could be exchanged in some cases, a target

usually possesses at least one distinct value out of the three mentioned. The author

also notes that the defender and the attacker generally have different values for the

same target, which is not the case for our zero-sum game formulation.
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III. Problem Description

3.1 Model Description

Consider a conflict situation in which a defender seeks to protect a set of cities, N ,

and wherein where each city j ∈ N has a value vj ∈ R+. An attacker seeks to destroy

cities so as to maximize damage, which is equivalent to minimizing the total value

of the defender’s surviving cities. We model the situation as a perfect information,

three-stage sequential, zero-sum game with two players, a defender and an attacker,

with only pure-strategies available for both players.

In the first stage of the game, the defender places m SAM batteries amongst the

set of feasible SAM sites, F ⊆ N . Available SAM sites are co-located with a subset

of the cities. We denote this defender strategy as d = (di)i∈F , where di ∈ {0, 1} and

require
∑
i∈F

di = m. Also, based on a critical distance r ∈ R+, we generate a coverage

matrix A = [aij]|F |×|N | to indicate whether a SAM battery located at city i can cover

city j, based on the Euclidean distance δij > 0 between city i and j, where

aij =


1, if δij ≤ r,

0, otherwise.

In our formulation, a covered city does not denote protection or fortification

against attacker missiles but merely the ability to do so depending on interception

allocations. A city j is considered covered if a SAM gets placed at city i (i.e., di = 1,

and city j is within the range to launch IMs against AMs coming to city j (i.e.,

aij = 1), regardless of the decision made.

In the second stage of the game, the attacker observes the defender’s allocation d

and launches all of its n AMs in a single salvo, implying that no further AMs will be

launched. The attacker’s strategies correspond to AM allocations to each city j ∈ N .
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We denote the attacker’s allocation strategy as w = (wj)j∈N , where wj ∈ Z+, and

require
∑
j∈N

wj = n.

In the third stage of the game, the defender observes the attacker’s AM allocation

w and decides which AMs to intercept with available IMs. Each IM, if allocated,

destroys the targeted AM with a probability p ∈ (0, 1), and we assume that no more

than one interceptor is launched against each AM. We denote the third stage defender

allocation by x = (xij)i∈F,j∈N and y = (yj)j∈N , where xij indicates the number of

interceptors launched from SAM site i ∈ F against AMs targeting city j ∈ N ; we

require that xij ∈ Z+ and
∑
j∈N

xij ≤ c, ∀i ∈ F , where c ∈ Z+ is the number of IMs

that each SAM battery may fire. The binary decision variable yj indicates whether

the city j ∈ N is protected. In order to protect city j, there must be at least as many

IMs launched to protect it (
∑
i∈F

xij), as the AMs attacking it (wj). Moreover, the

defender will not waste any interceptors. Together, this gives the equality constraint∑
i∈F

xij = wj if a city is protected. The number of possible strategies in the third stage

is 2|N |; each city is considered either protected or unprotected (yj ∈ {0, 1}, ∀j ∈ N),

but some of the strategies are infeasible because defender cannot protect a city that

is outside of SAM coverage.

The game proceeds in the following manner. The defender allocates its SAM

batteries (d), the attacker deploys AMs (w), and the defender deploys interceptors

against the incoming AMs to decide which cities to defend (x, y). The objective is to

find the pure-strategy Nash equilibrium of this three-stage defender-attacker-defender

(D-A-D) game.
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Table 1. Parameters

N Set of cities (targets) indexed by j
F Set of possible SAM sites indexed by i, F ⊆ N
A |F | by |N | coverage matrix, aij ∈ {0, 1}
vj Value of city j ∈ N
m Number of SAM batteries available
n Number of AMs available
c Number of IMs available per SAM battery
p Probability of single IM destroying single AM
r Maximum distance of coverage by each SAM battery

Table 2. Decision Variables

di Defender’s SAM allocation at city i ∈ F , di ∈ {0, 1}
wj Attacker’s AM allocation at city j ∈ N , wj ∈ Z+

xij Defender’s IM allocation from SAM site located at city i to city j, xij ∈ Z+

yj Defender’s decision variable to protect city j ∈ N , yj ∈ {0, 1}

max
d

min
w

max
x,y

∑
j∈N

vjyjp
wj (1a)

subject to
∑
i∈F

di = m, (1b)

∑
j∈N

wj = n, (1c)

∑
j∈N

xij ≤ cdi, ∀i ∈ F, (1d)

∑
i∈F

aijxij ≤ wj, ∀j ∈ N, (1e)

∑
i∈F

aijxij ≥ wjyj, ∀j ∈ N, (1f)

di ∈ {0, 1}, ∀i ∈ F, (1g)

wj ∈ Z+, ∀j ∈ N, (1h)

xij ∈ Z+, ∀i ∈ F, j ∈ N, (1i)

yj ∈ {0, 1}, ∀j ∈ N. (1j)
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The trilevel nonlinear integer program is now presented. Equation (1a) is the

objective function. The defender seeks to maximize the total expected survival value

of its cities while the attacker seeks to minimize the total expected survival value.

Equations (1b), (1c), and (1d) set the upper bounds on the number of SAM batteries,

AMs, and IMs, respectively. Equation (1e) enforces the assumption that the defender

will not launch more than one IM per incoming AM for each city. Equation (1f)

ensures the defender sends enough IMs to intercept incoming AMs. Equations (1g),

(1h), (1i), and (1j) enforce the binary and integrality constraints of the decision

variables.

Based on our assumptions, each city j ∈ N faces three different possibilities:

1) The city has no incoming AMs (i.e., wj = 0). With no incoming AMs, equation

(1f) enforces yj = 1, and the city is considered protected (i.e., yj = 1).

2) The city has incoming AMs and there are not enough IMs to intercept them

all (i.e., wj > 0 and
∑
i∈F

xij < wj). In this case, at least one AM reaches the city

unintercepted and destroys the city with 100% probability as indicated in General

Assumption 2. Equation (1f) forces yj = 0.

3) The city has incoming AMs and there is an IM launched against each AM (i.e.,

wj > 0 and
∑
i∈F

xij ≥ wj). In this case, all incoming AMs to the city are matched up

with an IM and the city is considered protected (i.e., yj = 1).

The possible defender payoffs for each city j based on the three scenario are shown

in Table 3.

Table 3. Possible Scenarios

Scenario yj Defender Payoff
1 1 vj
2 0 0
3 1 vjp

wj
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3.2 Solution Methodology

The following approaches for solving the trilevel program are discussed and suc-

cessively applied during testing in Chapter 4: exhaustive enumeration, α−β pruning,

and Double Oracle.

Method 1: Exhaustive Enumeration

A first approach to solve the trilevel program is to enumerate all possible strategies

in the first two levels and then utilize a commercial solver to optimize the third-stage

integer program and obtain single-stage payoffs for the last level.

In order to index all possible strategy sets, we create index sets that correspond

to the sets of all defender and attacker strategy sets. We denote a defender’s pure

strategy at the first stage as sd ∈ Sd, where sid is the ith strategy in a lexicographically

ordered set of all possible first-stage defender strategies, Sd. Let τd denote the total

number of possible first-stage defender strategies and define Sd = {s1d, . . . , sid, . . . , s
τd
d }.

Recall that sd 7→ d and that |Sd| = τd =
(|F |
m

)
.

We denote an attacker’s pure strategy at second stage as sa ∈ Sa, where sja is the

jth strategy in a lexicographically ordered set of all possible attacker strategies, Sa.

Sa = {s1a, . . . , sja, . . . , sτaa }. Recall that sa 7→ w and that |Sa| = τa =
(|N |+n−1

n

)
.

Such an index set allows us to model this game within the construct of a game

tree wherein all possible combinations of the defender and attacker pure strategies

in the first two stage are represented as S ≡ Sd × Sa, and the number of possible

defender-attacker combination can be represented as |S| = τdτa =
(|F |
m

)(|N |+n−1
n

)
.

For a particular strategy profile represented by the tuple (sd, sa), we solve the

resulting integer program as presented in (2a) - (2f) to obtain a single payoff for the

defender, which we denote as u(sd, sa), for which sd 7→ d and sa 7→ w.

19



Payoff: maximize
x,y

u(d,w) =
∑
j∈N

vjyjp
wj (2a)

subject to
∑
j∈N

xij ≤ cdi, ∀i ∈ F, (2b)

∑
i∈F

aijxij ≥ wjyj, ∀j ∈ N, (2c)

∑
i∈F

aijxij ≤ wj, ∀j ∈ N, (2d)

yj ∈ {0, 1}, ∀j ∈ N, (2e)

xij ∈ Z+,∀i ∈ F, j ∈ N. (2f)

Exhaustive enumeration is only tractable for small values of |N |, |F |, and n, since

τd and τa increase combinatorially in size with respect to increases in these parameters

Method 2: α− β Pruning

For a large game tree, there are more efficient ways to search for the maximin

payoff, which corresponds to the SPNE in our formulation. Using α − β pruning,

within an iterative exploration of the game tree, we fathom branches of nodes that

will not yield a better solution than the incumbent solution of best response player

strategies. In our implementation, α represents the lowest value that the maximizer

(defender) may obtain, and β represents the highest value that the minimizer (at-

tacker) may obtain. We set the initial values as α = 0 and β =
∑
j∈N

vj, since the worst

case scenario for the defender is when no city is protected (objective value= 0), and

the worst case scenario for the attacker is when all cities are protected and no AMs

are launched (objective value =
∑
j∈N

vj).

To investigate the impact of search order on computation time, we execute the

α − β pruning algorithm four times, each of which considers a different combina-
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tion of strategy search ordering at the respective defender and attacker stages of

the game tree. In other words, we search the game tree S in two different orders

at both stages. For example, we search the game tree S in the following manner:

(s1d, s
1
a), (s

1
d, s

2
a), . . . , (s

1
d, s

τa
a ), (s2d, s

1
a), . . . , (s

τd
d , s

τa
a ), where each terminal node is repre-

sented by the tuple (sd, sa). This particular method is denoted as αβ11, since we

begin the search at s1d, s
1
a.

Because the cities’ values can be ordered and the strategies are ordered lexico-

graphically, the order in which we search the tree may impact algorithm computation

time. The earlier we find the best value for the attacker (i.e., β̂ ≤ α̂), the more

branches we prune off in the tree search, saving computation time. Thus, it is in our

interest to order the strategies that yields such a result.

The pseudocode for the defender-attacker α − β pruning algorithm is shown in

Algorithm 1. Shown at the end of the algorithm, ŝd and ŝa correspond to the SPNE

defender and attacker strategy. Because we know that the α − β pruning algorithm

returns the SPNE of the game tree, we can conclude that α̂ = α∗, ŝd = s∗d, and

ŝa = s∗a. Note that α̂ = u(ŝd, ŝa) corresponds to the SPNE payoff for the defender.

The attacker’s SPNE payoff is simply −u(ŝd, ŝa) as this is a zero-sum game.

Method 3: Double Oracle

In our implementation of Double Oracle, developed by McMahan et al. [17], we

solve a trilevel optimization problem using three interrelated algorithmic procedures:

coreTree, Defender Oracle, and Attacker Oracle.

The first component is coreTree, wherein we solve the restricted game. In the

restricted game, we consider only the set of defender and attacker strategies, Skd and

Ska , currently identified at step k using backward induction. The resulting strategy

profile (ŝd, ŝa) is a Nash equilibrium for this restrict game, where ŝd ∈ Skd , ŝa ∈ Ska ,

and Sk = Skd × Ska . The second component is the Defender Oracle sub-problem,
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Algorithm 1 α− β pruning for D-A-D

1: α̂ := 0
2: for i = 1 to τd do
3: β̂ :=

∑
j∈N vj

4: for j = 1 to τa do
5: β̂ ← min(β̂, u(sid, s

j
a))

6: if β̂ ≤ α̂ then
7: ŝa ← sja
8: break
9: end

10: end
11: α̂← max(α̂, β̂)
12: if β̂ ≥ α̂ then
13: ŝd ← sid
14: end
15: end
16: return α̂, ŝd, ŝa

wherein we identify the defender’s best response (s̄d ∈ Sd) given an attacker’s current

best response (ŝa) from the coreTree. The third component is the Attacker Oracle

sub-problem, wherein we solve for the attacker’s best response (s̄a ∈ Sa) given a

defender’s current best response (ŝd) from the coreTree. Because of the nature of

our methodology, the Double Oracle procedure is a heuristic. The difference between

the Double Oracle implementation by Jain et al. [18] and this research is that we

do not generate mixed strategies from the core problem. Rather, we identify the

pure-strategy SPNE of the smaller game using backward induction within the trees

generated from the current strategy set. The pseudocode for a defender-attacker

Double Oracle is shown in Algorithm 2.

Defender Oracle Problem.

Given an attacker’s AM allocation, the Defender Oracle solves for the best allo-

cation of SAM batteries and IM launches. For the defender, sid is a best response to

the attacker strategy sa if u(sid, sa) ≥ u(si
′

d , sa) for all si
′

d ∈ Sd. It is possible to have
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Algorithm 2 Double Oracle

1: Initialize S0
d by generating an arbitrary set of defender strategies.

2: Initialize S0
a by generating an arbitrary set of attacker strategies.

3: k := 0
4: repeat
5: k ← k + 1
6: (ŝd, ŝa) ← coreTree(Sk−1d , Sk−1a )
7: s̄d ← DefenderO (ŝa)
8: Skd ← Sk−1d ∪ s̄d
9: s̄a ← AttackerO (ŝd)

10: Ska ← Sk−1a ∪ s̄a
11: until Skd = Sk−1d and Ska = Sk−1a

12: return ŝd, ŝa

multiple best responses, but we only consider pure strategies. Thus, we choose the

first strategy identified. The Defender Oracle sub-problem can be modeled as a linear

integer program. We can draw the parallel to MEXCLP from this problem, as De-

fender Oracle problem seeks to allocate facilities to maximize their expected coverage

value. However, probability of failure is not characterized by the facility. Rather, it is

a function of AM allocations by the attacker. Because this is a linear integer program

and we can find find the exact solution, we have that u(s̄d, ŝa) ≥ u(sid, ŝa), ∀sid ∈ Sd

holds.
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DefenderO: maximize
d,x,y

∑
j∈N

vjyjp
wj (3a)

subject to
∑
i∈F

di = m, (3b)

∑
j∈N

xij ≤ cdi, ∀i ∈ F, (3c)

∑
i∈F

aijxij ≥ wjyj, ∀j ∈ N, (3d)

∑
i∈F

aijxij ≤ wj, ∀j ∈ N, (3e)

di ∈ {0, 1}, ∀i ∈ F, (3f)

yj ∈ {0, 1}, ∀j ∈ N, (3g)

xij ∈ Z+,∀i ∈ F, j ∈ N. (3h)

Attacker Oracle Problem.

Given a defender’s SAM allocations, the Attacker Oracle sub-problem solves for

the best allocation of AMs, subject to a defender’s subsequent response by launching

a fixed number of IMs to intercept them from a set of SAM batteries at predetermined

locations. In other words, we seek to find some sia that satisfies u(sd, s
i
a) ≤ u(sd, s

i′
a )

for all si
′
a ∈ Sa. This problem can be modeled as a bilevel nonlinear integer program,

and we utilize a heuristic to obtain a solution. This problem is similar to WTAP [23],

as we seek optimal weapon target assignments, but the probability of destruction, p, is

not a characteristic of the attacker’s AM. Rather, it is a characteristic of the defender’s

IM. Because we utilize heuristics, we have that u(ŝd, s̄a) ≤ u(ŝd, s
i
a), ∀sia ∈ Sa does

not necessarily hold.
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AttackerO: minimize
w

maximize
x,y

∑
j∈N

vjyjp
wj (4a)

subject to
∑
j∈N

wj ≤ n, (4b)

∑
j∈N

xij ≤ cdi, ∀i ∈ F, (4c)

∑
i∈F

aijxij ≥ wjyj, ∀j ∈ N, (4d)

∑
i∈F

aijxij ≤ wj, ∀j ∈ N, (4e)

wj ∈ Z+,∀j ∈ N, (4f)

yj ∈ {0, 1}, ∀j ∈ N, (4g)

xij ∈ Z+, ∀i ∈ F, j ∈ N. (4h)

In order to solve the Attacker Oracle sub-problem, we utilize a neighborhood

search as shown in Algorithm 3. We give an initial feasible strategy, after which

we iteratively generate neighboring strategies and move to the best such neighboring

strategies. We use the notion of 2-opt exchange when generating our neighboring

strategies. In this context, a neighborhood of a given attacker strategy is a set of

all strategies that has exactly one AM moved from any city j ∈ N to some city

j′ ∈ N, j 6= j′. For example, if a given initial strategy is [0 4 3], where 4 AMs

are allocated to city 2 and 3 AMs to city 3 in a 3-city network, the neighborhood

of solutions generated from such an attacker strategy for a possible 2-opt exchange

would be as follows:
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neighbors([0 4 3]) =



0 4 3

1 3 3

0 3 4

1 4 2

0 5 2


.

This neighborhood search heuristic terminates when the incumbent feasible strat-

egy gives the best payoff relative to its own neighborhood (i.e., s̄a = B(1)). For

the Attacker Oracle, the search terminates for an initial strategy sia if u(ŝd, s
i
a) <

u(ŝd, s
i′
a ), ∀si′a ∈ B, where B is the set of neighborhood strategies generated.

Algorithm 3 Attacker Oracle

1: s̄a ← s1a
2: ū :=∞
3: repeat
4: B← neighbors(s̄a)
5: for i = 1 to |B| do
6: if u(ŝd,B(i)) < ū then
7: s̄a ← B(i)
8: ū← u(ŝd,B(i))

9: end
10: end
11: until s̄a = B(1)
12: return s̄a

In the following chapter, we present an example network instance to compare the

solution quality, algorithm quality, and robustness of the methodologies presented

in this chapter using an experimental design to examine the effect of parameters on

computation time and payoffs. In addition, we provide a scale up analysis of Double

Oracle for problems that are infeasible to solve using exhaustive enumeration or the

α− β pruning algorithm.
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IV. Computational Results

In this chapter, we present a small network to apply our proposed solution method-

ologies in the previous chapter. We conduct experiments on different problem in-

stances on the small network and present the findings. Subsequently, we present

a network that is too large for all but Double Oracle to be applied and show the

performance of Double Oracle.

4.1 Analysis on 6-city Network

We first examine the 6-city network used in Daskin’s MEXCLP [22], as shown

in Figure 2, with the same parameters and assumptions: F = N and r = 9. We

examine the 6-city network first because it is a small enough network to implement

all methodologies proposed in the previous chapter.

Because exhaustive enumeration and α − β are computationally expensive, we

generate problem instances via a Central Composite Design (CCD) having the values

shown in Table 4. Excluding the repeated center runs, we solve a total of 25 problem

instances and investigate the effect of the number of SAM batteries (m), number

of AMs (n), number of IMs (c), and the probability of single intercept (p), on the

required computation time and the solution quality. For each problem instance, we

apply six solution methodologies: exhaustive enumeration, α− β pruning using each

of four different search order combinations for the respective defender and attacker

levels of the game tree, and Double Oracle. All instances were solved by invoking

IBM ILOG CPLEX Optimization Studio (version 12.6) with MATLAB on a Intel(R)

Xeon E5-1620 3.6 GHz processor having 32 GB memory.

The resulting computation times are reported in Table 5. Columns m,n, c, p

represent a combination of defender and attacker capabilities that comprise each
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Table 4. Central Composite Design

m n c p
High 4 20 16 .7
Low 2 10 8 .3

instance, represented in a given row. The first sub-column of computation time

represents the time required to fully enumerate the game tree and identify the SPNE.

In successive sub-columns, four variations of α−β search represent the order in which

the tree was searched (See Method 2 in Chapter III for an explanation). Finally, the

DoubleO column reports the computation time required for the heuristic to terminate.

An asterisk (*) indicates that Double Oracle terminated before identifying the SPNE.

A B

C

D E

F

1 1

1

5 310

10

8

4

8

4
11 11

10

7 7

1 Value at city j, vj
δ Distance between i and j, δij

A
City j

Figure 2. 6-city Network

Solution Quality

Both exhaustive enumeration and the α− β variants are exact algorithms. Based

on the effects test using the result of Table 5, Table 6 shows that all four parameters

comprising a problem instance (i.e., m,n, c, p) have a statistically significant effect
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Table 5. Computation time on 6-city Network

Problem Instance Computation time (sec)
m n c p full αβ11 αβ12 αβ21 αβ22 DoubleO
3 5 12 0.5 9.75 0.77 8.78 1.25 8.32 0.41
2 10 8 0.3 88.58 35.25 42.78 35.07 42.15 1.35
2 10 8 0.7 88.33 19.35 50.09 18.28 44.16 1.55*
2 10 16 0.3 87.50 34.74 42.35 34.61 41.67 1.44
2 10 16 0.7 86.40 18.24 53.18 17.73 46.82 1.71
4 10 8 0.7 93.69 7.06 94.20 7.12 94.28 0.84
4 10 8 0.3 105.84 48.00 58.03 52.39 66.90 1.09
4 10 16 0.3 101.55 45.78 62.05 46.36 63.24 0.99
4 10 16 0.7 89.98 6.74 91.57 6.75 91.16 1.30
1 15 12 0.5 190.55 79.39 142.41 140.60 53.74 3.92*
5 15 12 0.5 203.29 83.19 155.41 83.40 155.57 2.16
3 15 4 0.5 1288.50 466.71 727.49 486.80 655.39 5.59*
3 15 12 0.1 796.86 454.52 383.54 455.20 380.27 1.77
3 15 12 0.5 924.61 262.38 634.65 276.23 604.69 1.40
3 15 12 0.9 764.09 63.60 758.64 99.63 553.48 3.91
3 15 20 0.5 773.12 226.12 523.28 226.56 508.31 1.63
2 20 8 0.3 3688.33 2263.86 1331.19 1942.82 1496.63 5.41
2 20 8 0.7 3189.35 921.37 1751.27 795.94 1697.74 8.72
2 20 16 0.3 2928.64 1835.90 789.69 1429.54 1165.64 2.92
2 20 16 0.7 2481.01 914.47 867.86 365.81 1433.88 3.14
4 20 8 0.3 3792.72 2360.05 1691.40 2390.64 1698.26 1.12
4 20 8 0.7 3689.57 652.39 3682.91 934.97 3196.53 2.25
4 20 16 0.3 3136.53 2006.02 1370.78 1991.22 1378.16 2.08
4 20 16 0.7 3101.86 665.69 3018.79 668.44 3023.00 2.52
3 25 12 0.5 24757.28 10955.51 12599.12 10979.81 12376.85 5.44

* indicates that Double Oracle terminated before identifying the SPNE.
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on the SPNE payoff. On the other hand, Double Oracle is a heuristic, so it cannot

guarantee to find the SPNE before it terminates. As shown in Table 5 under the

DoubleO column, 3 out of 25 instances (12%) fail to reach the SPNE and provide

a suboptimal solution. In all three instances, the reported payoff was less than the

SPNE payoff. Such results indicate that the defender (maximizer) failed to generate

correct strategies. Conversely, a reported payoff larger than the SPNE payoff indicates

that the attacker (minimizer) failed to reach the global minimum in the Attacker

Oracle procedure.

Table 6. Effects Test on Payoff

Variable F Ratio p-Value
m 22.4804 < 0.0001
n 95.2264 < 0.0001
c 13.9343 < 0.0001
p 805.5464 < 0.0001

Table 7. Double Oracle Suboptimal Instances

Problem Instance Payoff

m n c p SPNE DoubleO % Gap

2 10 8 0.7 7.676 7.216 6.0%
1 15 12 0.5 1.000 0.719 28.1%
3 15 4 0.5 2.188 1.313 40.0%

Algorithm Quality

In this section, we discuss how efficiently each algorithm converges to the SPNE.

We primarily examine computation times, since exhaustive enumeration and α − β

are guaranteed to converge to the SPNE. Also, we compare exhaustive enumeration

and α−β with Double Oracle in terms of computation time to show how well Double

Oracle scales in larger instances.
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Table 8. Computational Efficiency

Method Average % of S pruned
αβ11 64.4%
αβ12 41.4%
αβ21 64.1%
αβ22 38.5%

Comparison of Search Order in α− β

The order in which we search the respective levels of the game tree appears to

exhibit a difference on the required computation time. On average, αβ11 obtains the

fastest computation time or, equivalently stated, αβ11 needed to compute payoffs

(i.e., Equation 2) the least before terminating. Such a result is intuitive, as we expect

to find the SPNE near the top of the lexicographically ordered strategies (i.e., the

defender covers its most valuable cities, and the attacker attacks the most valued

cities).

Table 8 shows the proportion of the entire strategy space, S, generated before

convergence for the 25 CCD instances. Detailed results are shown in Table 9.

Robustness of the Algorithms

While Double Oracle failed to identify the SPNE in 3 out of 25 instances, the

algorithm does scale well with respect to computation time. For the largest problem

instance of m = 3, n = 25, c = 12, p = 0.5, the exhaustive enumeration proce-

dure required |S| = τdτa =
(
6
3

)(
6+25−1

25

)
= 2850120 combinations of defender-attacker

strategies to calculate and terminated after about 7 hours of computation time. The

best case α− β algorithmic variant, αβ11, found the SPNE in 10955 seconds (≈ 3.04

hours). In contrast, Double Oracle terminated in 5.44 seconds after identifying the

SPNE. Although α − β pruning invokes the stage 3 calculation of payoff functions

significantly fewer times in the game tree than the exhaustive enumeration procedure,
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Table 9. % of S generated on 6-city Network

Problem Instance % generated
m n c p full αβ11 αβ12 αβ21 αβ22 DoubleO

3 5 12 0.5 100% 7.94% 84.96% 12.84% 89.60% 0.179%
2 10 8 0.3 100% 39.86% 47.49% 39.67% 48.21% 0.027%
2 10 8 0.7 100% 21.91% 49.65% 20.95% 56.41% 0.027%*
2 10 16 0.3 100% 39.86% 47.49% 39.67% 48.21% 0.027%
2 10 16 0.7 100% 21.31% 53.82% 20.71% 60.82% 0.036%
4 10 8 0.3 100% 46.57% 60.12% 46.57% 60.12% 0.013%
4 10 8 0.7 100% 7.69% 99.01% 7.69% 99.01% 0.013%
4 10 16 0.3 100% 46.57% 60.12% 46.57% 60.12% 0.013%
4 10 16 0.7 100% 7.69% 99.01% 7.69% 99.01% 0.013%
1 15 12 0.5 100% 42.74% 29.56% 71.30% 72.11% 0.026%*
5 15 12 0.5 100% 41.99% 74.68% 41.99% 74.68% 0.006%
3 15 4 0.5 100% 37.67% 48.68% 39.34% 54.65% 0.003%*
3 15 12 0.5 100% 31.66% 61.18% 31.88% 62.53% 0.003%
3 15 12 0.9 100% 10.16% 64.97% 15.21% 82.16% 0.005%
3 15 20 0.5 100% 31.66% 61.18% 31.88% 62.53% 0.003%
2 20 8 0.3 100% 57.47% 44.72% 49.09% 37.92% 0.003%
2 20 8 0.7 100% 31.95% 48.92% 27.69% 49.63% 0.004%
2 20 16 0.3 100% 54.59% 37.91% 49.23% 33.27% 0.001%
2 20 16 0.7 100% 36.56% 49.23% 18.11% 34.86% 0.002%
4 20 8 0.3 100% 59.51% 47.16% 59.51% 47.16% 0.001%
4 20 8 0.7 100% 23.89% 72.69% 31.04% 79.74% 0.001%
4 20 16 0.3 100% 59.51% 47.16% 59.51% 47.16% 0.001%
4 20 16 0.7 100% 28.54% 78.12% 28.54% 78.12% 0.001%
3 25 12 0.5 100% 45.45% 48.85% 45.51% 49.48% 0.001%

* indicates that Double Oracle terminated before identifying the SPNE.
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the method does not scale well for large instances.

In fact, neither exhaustive enumeration nor α − β scale well to larger instances.

Because the required computation time for the exhaustive enumeration and α−β so-

lution methods are directly related to the size of the Cartesian product of the defender

and attacker strategies (i.e., |S|), as n and/or |N | increases, the time required to iden-

tify the SPNE grows in relation to the problem’s size. For an instance having m = 3,

n = 25, c = 12, and p = 0.5, we have |S| = 2850120 via exhaustive enumeration,

as calculated previously. As n increases to 35 and 45, |S| increases to approximately

13.1 million and 42.4 million, respectively. However, Double Oracle can still handle

such instances with little computational effort. Double Oracle terminated after 10.95

seconds for n = 35 and after 18.01 seconds for n = 45.

4.2 Scaled Up Analysis

This section presents the result of experiments using Double Oracle on the 55-city

network utilized by Daskin [22], as shown in Figure 3. The cities are distributed on

a Cartesian plain, and their values are monotonically non-increasing in order (i.e.,

vi ≥ vj,∀ i < j). The total value of the cities,
∑
j∈N

vj, is 6400. We apply the same

assumptions (i.e., F = N and r = 15) as Daskin’s MEXCLP, and we use c = 20 and

p = 0.9 as representative for our instance, based on the operating characteristics of

Iron Dome [28].

Exhaustive enumeration and α− β are not practical to use for this network size,

since τd and τa are intractably large. Even for the smallest instance we examine in the

55-city network (i.e., m = 1, n = 10, and |N | = 55), we find that τd =
(
55
1

)
and τa =(

55+10−1
10

)
, thus |S| = τdτa ≈ 8.33 × 1012. Each payoff calculation was approximately

2 × 10−3s, which means CPLEX processes about 1000 stage 3 calculations in every

2 seconds. Assuming equal calculation time, the exhaustive enumeration would take
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(8.33 × 1012)(2 × 10−3)s ≈ 1.67 × 1010s ≈ 528 years. Thus, we cannot verify the

optimality of the results of Double Oracle through exhaustive enumeration or α − β

for large instances.

Table 10. Computation time (s) on 55-city Network with c = 20 and p = 0.9.

Number of SAM batteries (m)
1 3 6 10

Number
of
AMs(n)

10 23.83 18.49 22.17 15.00
20 75.83 59.90 51.18 40.20
30 120.21 98.37 206.75 130.88
40 274.42 212.91 213.01 189.07
50 470.88 365.37 240.97 261.47

Table 11. Approximate SPNE Payoffs on 55-city Network with c = 20 and p = 0.9.

Number of SAM batteries (m)
1 3 6 10

Number
of
AMs(n)

10 5400.00 5831.41 5553.10 5834.83
20 4763.79 5190.84 5414.11 5435.66
30 4165.66 5051.60 5077.03 5119.18
40 3585.66 4705.86 4862.84 4862.84
50 3281.05 4427.80 4749.59 4652.31

Total value of the cities in this network is 6400.

Table 10 shows the computation time before Double Oracle terminates with vary-

ing n and m. Table 11 shows the payoffs for the defender with varying n and m.

Notice that defender’s payoff sometimes decreases as it gets more resources. For ex-

ample, at n = 10, the defender gets payoff of 5831.41 with m = 3, but 5751.63 with

m = 6. Such phenomenon could be attributed to the Double Oracle failing to identify

the SPNE, being a heuristic.

Example Result

Shown in Figure 5 and 6 are example result of a Double Oracle executed on a

specific instance. The interpretation of the plot is that after the three stages, we
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expect to see what is shown in the plot. For Figure 5, in the first stage, we expect

the defender to place SAM at city 1; in the second stage, we expect the attacker to

launch AMs at cities with red circles; in the third stage we expect the defender launch

interceptors to protect cities 1,2,3, and 4. Also, if we assume that the outcome is the

SPNE, then we can assume that one who deviates from the displayed outcome will

achieve less payoff than the current outcome.

Sensitivity Analysis

Shown in Figure 7 is a sensitivity of payoff in changing p. The monotonic increase

in payoff as p increases is consistent with what we expect. Also, we expect smaller

payoff with larger n, and such trend is only violated past p = 0.9.

Figure 8 shows the increase in computation time as n increases, but except for

n = 50, trend of computation time as p changes does not seem to exist. Also, unlike

exhaustive enumeration and α−β, computation time does not increase exponentially

as n increases for Double Oracle.

Figure 9 and 10 show a side-by-side comparison of the expected outcome if the

city distribution is reversed.
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V. Conclusions

5.1 Summary and Conclusions

Advanced technologies for missiles and guidance systems have increased the threat

to the U.S. national security. Optimal disposition of IADS assets is an important

problem for the U.S military and its allies for that reason. In this thesis, we present a

trilevel nonlinear integer program to model the Defender-Attacker-Defender situation

as a two player, three-stage sequential, perfect and complete information, zero-sum

game. We initially attempt to solve by enumerating all possible strategies as a game

tree. However, the size of the strategy space increase to intractable size because this

is a combinatorial problem. We attempt to be more efficient by using α− β pruning,

but α − β does not scale well. Then, we adapt Double Oracle algorithm to solve

for the pure strategy SPNE in order to solve problems that are realistic in size. We

present algorithm quality, solution quality, and sensitivity analysis.

In conclusion, we found that Double Oracle is the only methodology that can

provide the solution quickly. We also demonstrated that the time to solve a Double

Oracle instance does not increase exponentially as do exhaustive enumeration and

α − β. While Double Oracle is not an exact algorithm in our adaptation, we show

that in most cases, it does not violate monotonicity and the solution quality trends

as we expected.

5.2 Potential Future Research

Relaxing Assumptions

Many of the model assumptions in this thesis can be relaxed and examined for

future research. General assumption 1 states that all parameters are common knowl-

edge. Relaxing this assumption requires the game model to have imperfect informa-
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tion, which is more computationally expensive. General assumption 2 states that the

defender and attacker value targets equally. Relaxing this assumption will make the

game non-zero-sum.

Defender assumption 1 states that a SAM battery can only be co-located with a

city. Relaxing this assumption will make the defender’s strategy space continuous,

which would make the model more realistic, but it would be computationally expen-

sive. Defender assumption 2 states that at most one SAM battery can be located at

a given site. Relaxing this assumption will increase the number of possible defender

strategies from
(|F |
m

)
to
(|F |+m−1

m

)
, but given Double Oracle’s performance, increased

strategy space should not be an issue computationally. Defender assumption 3 states

that only one interceptor will be launched against incoming AM. This assumption was

put in place assuming that the defender will not have time to observe and react to

failed interception. However, relaxing this assumption will allow the defender to pro-

tect cities with large values with more redundancy. In order to relax this assumption,

a penalty function for over-launching IM must be implemented.

Attacker assumption 2 states that all missiles are identical. This assumption

may not be true, as different attacker missiles have different flying characteristics. If

relaxed, the probability of a single intercept, p, will become a vector that represents

the characteristics of different AMs. Attacker assumption 3 states that an attacker

will fire all of its AMs in a single salvo. If relaxed, the attacker stage becomes

dynamic, and the attacker oracle will resemble a dynamic weapon target assignment,

as opposed to the static weapon target assignment. This would make the problem

more difficult and Double Oracle may not be applicable anymore, but the model

would be more realistic. Simulation may be a good tool to implement the relaxation

of attacker assumption 3.

Improvement on Tree Search Algorithm
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Besides α−β, there are many other tree-search algorithms that have been proven

to perform better in artificial intelligence field. Some of the examples include SSS*

[29], NegaScout [30], and MTD(f) [31]. For the purpose of further research in this

topic, we do not recommend examining tree-search algorithms. As we have a finite

and known game tree (defender-attacker-defender) depth, there are more efficient

algorithms to implement, such as Double Oracle.

Improvement on Double Oracle

Our current implementation of Double Oracle as developed by Jain et al. [18]

can be improved in several ways. Not generating mixed strategies for coreTree may

have an impact on identifying the SPNE before the algorithm terminates. Also,

one could consider generating multiple best-response functions via the Defender and

Attacker Oracle routines. Also, the Attacker Oracle heuristic can be improved upon

with regard to its neighborhood search. A closer examination of VLSN techniques by

Ahuja et al. [32] would help in that case. Finally, one could examine an improved

version of the Double Oracle solution method developed by Jain et al. [33]: Securing

Networks by Applying a Randomized Emplacement Strategy (SNARES).
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